Lecture 11

More Examples on Mathematical Induction, Flawed Proofs

Theorem: $\forall n \in \mathbb{Z}^+$, there exists a tiling of a $2^n \times 2^n$ courtyard

Theorem: $\forall n \in \mathbb{Z}^+$, there exists a tiling of a $2^n \times 2^n$ courtyard using L-shaped tiles with a tree in

Theorem: $\forall n \in \mathbb{Z}^+$, there exists a tiling of a $2^n \times 2^n$ courtyard using L-shaped tiles with a tree in

a central square.

Theorem: $\forall n \in \mathbb{Z}^+$, there exists a tiling of a $2^n \times 2^n$ courtyard using L-shaped tiles with a tree in a central square.

 2×2

Theorem: $\forall n \in \mathbb{Z}^+$, there exists a tiling of a $2^n \times 2^n$ courtyard using L-shaped tiles with a tree in a central square.

 2×2

 $\times 2^2$

a central square.

 2×2

 $2^{2} \times 2^{2}$

Theorem: $\forall n \in \mathbb{Z}^+$, there exists a tiling of a $2^n \times 2^n$ courtyard using L-shaped tiles with a tree in

$$2^3 \times 2^3$$

Proof:

Proof: We will use mathematical induction.

Proof: We will use mathematical induction.

Basis Step:

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

 2×2

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step:

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

 2^k

How to proceed from here?

Tip: Sometimes stronger statement is easier to prove using induction.

Tip: Sometimes stronger statement is easier to prove using induction.

Let's create a stronger version!

Tip: Sometimes stronger statement is easier to prove using induction.

Let's create a stronger version!

Previous Theorem: $\forall n \in \mathbb{Z}^+$, there exists a tiling of a $2^n \times 2^n$ courtyard using L-shaped tiles with

Tip: Sometimes stronger statement is easier to prove using induction.

Let's create a stronger version!

Previous Theorem: $\forall n \in \mathbb{Z}^+$, there exists a tiling of a $2^n \times 2^n$ courtyard using L-shaped tiles with a tree in a central square.

Tip: Sometimes stronger statement is easier to prove using induction.

Let's create a stronger version!

a tree in a central square.

Previous Theorem: $\forall n \in \mathbb{Z}^+$, there exists a tiling of a $2^n \times 2^n$ courtyard using L-shaped tiles with

Stronger Theorem: $\forall n \in \mathbb{Z}^+$, there exists a tiling of a $2^n \times 2^n$ courtyard using L-shaped tiles with

Tip: Sometimes stronger statement is easier to prove using induction.

Let's create a stronger version!

a tree in a central square.

a tree in any square.

Previous Theorem: $\forall n \in \mathbb{Z}^+$, there exists a tiling of a $2^n \times 2^n$ courtyard using L-shaped tiles with

Stronger Theorem: $\forall n \in \mathbb{Z}^+$, there exists a tiling of a $2^n \times 2^n$ courtyard using L-shaped tiles with

Proof:

Proof: We will use mathematical induction.

Proof: We will use mathematical induction.

Basis Step:

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

 2×2

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

 2×2

 2×2

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

 2×2

 2×2

 2×2

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

 2×2

 2×2

 2×2

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step:

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

Proof: We will use mathematical induction.

Basis Step: For n = 1, the statement is trivially true.

Inductive Step: Assuming we can tile $2^k \times 2^k$ courtyard, we will prove it for $2^{k+1} \times 2^{k+1}$.

False Theorem: All positive integers of the form 2n + 1 are divisible by 2.

False Theorem: All positive integers of the form 2n + 1 are divisible by 2.

Incorrect Proof:

False Theorem: All positive integers of the form 2n + 1 are divisible by 2.

Incorrect Proof: We will prove the statement using mathematical induction.

False Theorem: All positive integers of the form 2n + 1 are divisible by 2.

Incorrect Proof: We will prove the statement using mathematical induction.

Basis Step:

False Theorem: All positive integers of the form 2n + 1 are divisible by 2.

Incorrect Proof: We will prove the statement using mathematical induction.

Basis Step: Statement is "trivially" true for n = 1.

False Theorem: All positive integers of the form 2n + 1 are divisible by 2.

Incorrect Proof: We will prove the statement using mathematical induction.

Basis Step: Statement is "trivially" true for n = 1.

Inductive Step:

False Theorem: All positive integers of the form 2n + 1 are divisible by 2. **Incorrect Proof:** We will prove the statement using mathematical induction. **Basis Step:** Statement is "trivially" true for n = 1. **Inductive Step:** Assume that the statement is true for k, i.e,

False Theorem: All positive integers of the form 2n + 1 are divisible by 2. **Incorrect Proof:** We will prove the statement using mathematical induction. **Basis Step:** Statement is "trivially" true for n = 1. **Inductive Step:** Assume that the statement is true for k, i.e, 2k + 1 is divisible by 2

False Theorem: All positive integers of the form 2n + 1 are divisible by 2. **Incorrect Proof:** We will prove the statement using mathematical induction. **Basis Step:** Statement is "trivially" true for n = 1. **Inductive Step:** Assume that the statement is true for k, i.e, 2k + 1 is divisible by 2

- Under that assumption prove that it is true for k + 1 as well, i.e.,

False Theorem: All positive integers of the form 2n + 1 are divisible by 2. **Incorrect Proof:** We will prove the statement using mathematical induction. **Basis Step:** Statement is "trivially" true for n = 1. **Inductive Step:** Assume that the statement is true for k, i.e, 2k + 1 is divisible by 2

2k + 3 is divisible by 2

- Under that assumption prove that it is true for k + 1 as well, i.e.,

False Theorem: All positive integers of the form 2n + 1 are divisible by 2. **Incorrect Proof:** We will prove the statement using mathematical induction. **Basis Step:** Statement is "trivially" true for n = 1. **Inductive Step:** Assume that the statement is true for k, i.e, 2k + 1 is divisible by 2

2k + 3 is divisible by 2

IH implies that 2k + 1 = 2c.

- Under that assumption prove that it is true for k + 1 as well, i.e.,

False Theorem: All positive integers of the form 2n + 1 are divisible by 2. **Incorrect Proof:** We will prove the statement using mathematical induction. **Basis Step:** Statement is "trivially" true for n = 1. **Inductive Step:** Assume that the statement is true for k, i.e, 2k + 1 is divisible by 2

2k + 3 is divisible by 2

IH implies that 2k + 1 = 2c.

Adding 2 on both sides of 2k + 1 = 2c

- Under that assumption prove that it is true for k + 1 as well, i.e.,

False Theorem: All positive integers of the form 2n + 1 are divisible by 2. **Incorrect Proof:** We will prove the statement using mathematical induction. **Basis Step:** Statement is "trivially" true for n = 1. **Inductive Step:** Assume that the statement is true for k, i.e, 2k + 1 is divisible by 2

2k + 3 is divisible by 2

IH implies that 2k + 1 = 2c.

Adding 2 on both sides of 2k + 1 = 2c gives us 2k + 3 = 2(c + 1).

- Under that assumption prove that it is true for k + 1 as well, i.e.,

False Theorem: All positive integers of the form 2n + 1 are divisible by 2. **Incorrect Proof:** We will prove the statement using mathematical induction. **Basis Step:** Statement is "trivially" true for n = 1. **Inductive Step:** Assume that the statement is true for k, i.e, 2k + 1 is divisible by 2

2k + 3 is divisible by 2

IH implies that 2k + 1 = 2c.

Thus, 2k + 3 is divisible by 2.

- Under that assumption prove that it is true for k + 1 as well, i.e.,

Adding 2 on both sides of 2k + 1 = 2c gives us 2k + 3 = 2(c + 1).

False Theorem: All positive integers of the form 2n + 1 are divisible by 2. **Incorrect Proof:** We will prove the statement using mathematical induction. **Basis Step:** Statement is "trivially" true for n = 1. **Inductive Step:** Assume that the statement is true for k, i.e, 2k + 1 is divisible by 2

2k + 3 is divisible by 2

IH implies that 2k + 1 = 2c.

Thus, 2k + 3 is divisible by 2.

- Under that assumption prove that it is true for k + 1 as well, i.e.,

Adding 2 on both sides of 2k + 1 = 2c gives us 2k + 3 = 2(c + 1).

False Theorem: All positive integers of the form 2n + 1 are divisible by 2. **Incorrect Proof:** We will prove the statement using mathematical induction. **Basis Step:** Statement is "trivially" true for n = 1. **Inductive Step:** Assume that the statement is true for k, i.e, 2k + 1 is divisible by 2

2k + 3 is divisible by 2

IH implies that 2k + 1 = 2c.

Thus, 2k + 3 is divisible by 2.

- Error of this proof. Be careful in base cases.
- Under that assumption prove that it is true for k + 1 as well, i.e.,

Adding 2 on both sides of 2k + 1 = 2c gives us 2k + 3 = 2(c + 1).

False Theorem: All horses are of the same colour.

False Theorem: All horses are of the same colour.

Incorrect Proof: Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.

False Theorem: All horses are of the same colour.

Incorrect Proof: Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.

Basis Step:

False Theorem: All horses are of the same colour.

Incorrect Proof: Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.

Basis Step: For n = 1, the statement is obviously true.

False Theorem: All horses are of the same colour.

Incorrect Proof: Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.

Basis Step: For n = 1, the statement is obviously true.

Inductive Step:

False Theorem: All horses are of the same colour.

Basis Step: For n = 1, the statement is obviously true.

- **Incorrect Proof:** Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.
- **Inductive Step:** We assume the statement is true for k horses and prove it for k + 1 horses.

False Theorem: All horses are of the same colour.

Basis Step: For n = 1, the statement is obviously true.

1 2 3 ... *i* ...

- **Incorrect Proof:** Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.
- **Inductive Step:** We assume the statement is true for k horses and prove it for k + 1 horses.

$$j \dots (k-1) k (k+1)$$

False Theorem: All horses are of the same colour.

Basis Step: For n = 1, the statement is obviously true.

1 2 3 ... *i* ...

- **Incorrect Proof:** Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.
- **Inductive Step:** We assume the statement is true for k horses and prove it for k + 1 horses.

$$j \dots (k-1) k (k+1)$$

False Theorem: All horses are of the same colour.

Basis Step: For n = 1, the statement is obviously true.

1 2 3 ... *i* ...

- **Incorrect Proof:** Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.
- **Inductive Step:** We assume the statement is true for k horses and prove it for k + 1 horses.

$$j \dots (k-1) k (k+1)$$

False Theorem: All horses are of the same colour.

Basis Step: For n = 1, the statement is obviously true.

- **Incorrect Proof:** Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.
- **Inductive Step:** We assume the statement is true for k horses and prove it for k + 1 horses.

$$j \dots (k-1) k (k+1)$$

False Theorem: All horses are of the same colour.

Basis Step: For n = 1, the statement is obviously true.

- **Incorrect Proof:** Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.
- **Inductive Step:** We assume the statement is true for k horses and prove it for k + 1 horses.
 - 2nd, 3rd, ..., (k + 1)th horses are of same colour.

$$j \dots (k-1) k (k+1)$$

False Theorem: All horses are of the same colour.

Basis Step: For n = 1, the statement is obviously true.

1st, 2nd, ..., kth horses are of same colour.

If 1st to kth horses have the same colour

- **Incorrect Proof:** Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.
- **Inductive Step:** We assume the statement is true for k horses and prove it for k + 1 horses.
 - 2nd, 3rd, ..., (k + 1)th horses are of same colour.

$$j \dots (k-1) k (k+1)$$

False Theorem: All horses are of the same colour.

Basis Step: For n = 1, the statement is obviously true.

- **Incorrect Proof:** Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.
- **Inductive Step:** We assume the statement is true for k horses and prove it for k + 1 horses.
 - 2nd, 3rd, ..., (k + 1)th horses are of same colour.

$$j \dots (k-1) k (k+1)$$

- If 1st to kth horses have the same colour and 2nd to (k + 1)th horses have the same colours

False Theorem: All horses are of the same colour.

Basis Step: For n = 1, the statement is obviously true.

1st, 2nd, ..., kth horses are of same colour.

as well, then all k + 1 horses must have the same colour.

- **Incorrect Proof:** Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.
- **Inductive Step:** We assume the statement is true for k horses and prove it for k + 1 horses.
 - 2nd, 3rd, ..., (k + 1)th horses are of same colour.

$$j \dots (k-1) k (k+1)$$

If 1st to kth horses have the same colour and 2nd to (k + 1)th horses have the same colours

False Theorem: All horses are of the same colour.

Basis Step: For n = 1, the statement is obviously true.

1st, 2nd, ..., kth horses are of same colour.

as well, then all k + 1 horses must have the same colour.

- **Incorrect Proof:** Let's rephrase as follows: $\forall n \in \mathbb{Z}^+$, any *n* horses are of the same colour.
- **Inductive Step:** We assume the statement is true for k horses and prove it for k + 1 horses.
 - 2nd, 3rd, ..., (k + 1)th horses are of same colour.

$$j \dots (k-1) k (k+1)$$

If 1st to kth horses have the same colour and 2nd to (k + 1)th horses have the same colours

Principle of Mathematical Induction:

we perform two steps:

Basis Step: Prove that P(1) is true, unconditionally.

- To prove P(n) is true for all positive integers n, where P(n) is a propositional function,
- **Inductive Step:** We prove that $P(k) \rightarrow P(k+1)$ is true for all positive integers k.

Principle of Mathematical Induction:

To prove P(n) is true for all positive integers n, where P(n) is a propositional function, we perform two steps:

Basis Step: Prove that P(1) is true, unconditionally.

Inductive Step: We prove that $P(k) \rightarrow P(k+1)$ is true for all positive integers k.

Principle of Mathematical Induction:

we perform two steps:

Basis Step: Prove that P(1) is true, unconditionally.

- To prove P(n) is true for all positive integers n, where P(n) is a propositional function,
- **Inductive Step:** We prove that $P(k) \rightarrow P(k+1)$ is true for all positive integers k.

The previous proof isn't doing the inductive step thoroughly.

Principle of Mathematical Induction:

To prove P(n) is true for all positive integers n, where P(n) is a propositional function, we perform two steps:

Basis Step: Prove that P(1) is true, unconditionally.

Inductive Step: We prove that $P(k) \rightarrow P(k+1)$ is true for all positive integers k.

The previous proof isn't doing the inductive step thoroughly. It did not prove $P(1) \rightarrow P(2)$.

Theorem: Every integer > 1 can be represented uniquely as a product of prime numbers, up to the order of the factors.

Theorem: Every integer > 1 can be represented uniquely as a product of prime numbers, up to the order of the factors.

Plan: We will try to prove assuming very few basic things.

- up to the order of the factors.
- **Plan:** We will try to prove assuming very few basic things.

Theorem: Every integer > 1 can be represented uniquely as a product of prime numbers,

Defn: An integer > 1 is called prime if it cannot be written as a product of two smaller numbers.

- up to the order of the factors.
- **Plan:** We will try to prove assuming very few basic things.
- Else it is **composite**.

Theorem: Every integer > 1 can be represented uniquely as a product of prime numbers,

Defn: An integer > 1 is called prime if it cannot be written as a product of two smaller numbers.

Theorem: Every integer > 1 can be represented uniquely as a product of prime numbers, up to the order of the factors.

Theorem: Every integer > 1 can be represented uniquely as a product of prime numbers, up to the order of the factors.

Proof:

Theorem: Every integer > 1 can be represented uniquely as a product of prime numbers, up to the order of the factors.

Proof: We will deal with the uniqueness part later.

Theorem: Every integer > 1 can be represented uniquely as a product of prime numbers, up to the order of the factors.

Proof: We will deal with the uniqueness part later.

Basis Step:

- up to the order of the factors.
- **Proof:** We will deal with the uniqueness part later.
- **Basis Step:** For n = 2, the statement is trivially true.

- up to the order of the factors.
- **Proof:** We will deal with the uniqueness part later.
- **Basis Step:** For n = 2, the statement is trivially true.
- **Inductive Step:**

- **Theorem:** Every integer > 1 can be represented up to the order of the factors.
- **Proof:** We will deal with the uniqueness part later.
- **Basis Step:** For n = 2, the statement is trivially true.
- **Inductive Step:** Assume the statement is true for k

- up to the order of the factors.
- **Proof:** We will deal with the uniqueness part later.
- **Basis Step:** For n = 2, the statement is trivially true.
- **Inductive Step:** Assume the statement is true for k, i.e., $k = p_1 \cdot p_2 \cdot \dots \cdot p_i$.

- up to the order of the factors.
- **Proof:** We will deal with the uniqueness part later.
- **Basis Step:** For n = 2, the statement is trivially true.
- **Inductive Step:** Assume the statement is true for k, i.e., $k = p_1 \cdot p_2 \cdot \dots \cdot p_i$.
- There are two cases for k + 1:

- up to the order of the factors.
- **Proof:** We will deal with the uniqueness part later.
- **Basis Step:** For n = 2, the statement is trivially true.
- **Inductive Step:** Assume the statement is true for k, i.e., $k = p_1 \cdot p_2 \cdot \dots \cdot p_i$.
- There are two cases for k + 1:
- If k + 1 is prime, then we are done.

- up to the order of the factors.
- **Proof:** We will deal with the uniqueness part later.
- **Basis Step:** For n = 2, the statement is trivially true.
- **Inductive Step:** Assume the statement is true for k, i.e., $k = p_1 \cdot p_2 \cdot \dots \cdot p_i$.
- There are two cases for k + 1:
- If k + 1 is prime, then we are done.
- If k + 1 is not a prime

- up to the order of the factors.
- **Proof:** We will deal with the uniqueness part later.
- **Basis Step:** For n = 2, the statement is trivially true.
- **Inductive Step:** Assume the statement is true for k, i.e., $k = p_1 \cdot p_2 \cdot \dots \cdot p_i$.
- There are two cases for k + 1:
- If k + 1 is prime, then we are done.
- If k + 1 is not a prime, then $k + 1 = p \cdot q$ for p, q > 1.

- up to the order of the factors.
- **Proof:** We will deal with the uniqueness part later.
- **Basis Step:** For n = 2, the statement is trivially true.
- **Inductive Step:** Assume the statement is true for k, i.e., $k = p_1 \cdot p_2 \cdot \dots \cdot p_i$.
- There are two cases for k + 1:
- If k + 1 is prime, then we are done.
- If k + 1 is not a prime, then $k + 1 = p \cdot q$ for p, q > 1.

p and q may not be k. So how do we use IH?

- up to the order of the factors.
- **Proof:** We will deal with the uniqueness part later.
- **Basis Step:** For n = 2, the statement is trivially true.
- **Inductive Step:** Assume the statement is true for k, i.e., $k = p_1 \cdot p_2 \cdot \dots \cdot p_i$.
- There are two cases for k + 1:
- If k + 1 is prime, then we are done.
- If k + 1 is not a prime, then $k + 1 = p \cdot q$ for p, q > 1.

p and q may not be k. So how do we use IH? Let's learn strong induction!